一、我们在前面讲的时候提到过进程互斥的概念,下面写个程序来模拟一下,程序流程如下图:
即父进程打印字符O,子进程打印字符X,每次打印一个字符后要sleep 一下,这里要演示的效果是,在打印程序的边界有PV操作,故每个进程中间sleep 的时间即使时间片轮转到另一进程,由于资源不可用也不会穿插输出其他字符,也就是说O或者X字符都会是成对出现的,如OOXXOOOOXXXXXXOO....
程序如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | #include<sys/types.h>#include<unistd.h>#include<errno.h>#include<sys/ipc.h>#include<sys/sem.h>#include<sys/wait.h>#define ERR_EXIT(m) \ do { \ perror(m); \ exit(EXIT_FAILURE); \ } while(0)union semun { int val; /* Value for SETVAL */ struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */ unsigned short *array; /* Array for GETALL, SETALL */ struct seminfo *__buf; /* Buffer for IPC_INFO (Linux-specific) */ };int semid;/* pv操作之间的临界区,导致打印的字符一定是成对出现的 */void print(char op_char) { int pause_time; srand(getpid()); int i; for (i = 0; i < 10; i++) { sem_p(semid); printf("%c", op_char); fflush(stdout); pause_time = rand() % 3; sleep(pause_time); printf("%c", op_char); fflush(stdout); sem_v(semid); pause_time = rand() % 2; sleep(pause_time); } }int main(void) { semid = sem_create(IPC_PRIVATE); sem_setval(semid, 1); pid_t pid; pid = fork(); if (pid == -1) ERR_EXIT("fork"); if (pid > 0) { print('o'); wait(NULL); sem_d(semid); } else { print('x'); } return 0; } |
sem_create 等函数参考。在调用semget 时指定key = IPC_PRIVATE,表示创建的是私有的信号量集,但具有亲缘关系的进程是可见的,比如父子进程。输出如下:
simba@ubuntu:~/Documents/code/linux_programming/UNP/system_v$ ./print ooxxooxxooxxooxxooooooxxooxxooxxooxxxxxx
可以看到输出都是成对出现的字符。
分析一下:semval = 1,假设父进程先被调度执行,父进程先P了一下,此时 semval = 0,子进程在父进程睡眠时间被调度的时候尝试P,semval = -1,然后子进程阻塞了,父进程打印完V了一下,semval = 0,唤醒子进程,子进程的P操作返回,打印字符睡眠后V了一下,semval = 1。当然在子进程睡眠的时候父进程可能也在尝试P,故就一直循环往复下去。
二、哲学家就餐问题的描述可以参考,下面我们尝试解决这个问题的方法是:仅当一个哲学家两边筷子都可用时才允许他拿筷子。
上图中红色数字表示哲学家的编号,总共5个哲学家,用5个进程来表示;黑色数字表示筷子的编号,总共有5根筷子,可以定义一个信号量集中含有5个信号量,每个信号量的初始值为1,当某个哲学家可以同时得到两根筷子(同时P两个信号量返回)时可以用餐,否则阻塞等待中。用餐后需要同时V一下两个信号量,让其他进程可以P成功。
程序如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | #include<stdio.h>#include<stdlib.h>#include<sys/ipc.h>#include<sys/msg.h>#include<sys/types.h>#include<unistd.h>#include<errno.h>#include<sys/ipc.h>#include<sys/sem.h>#include<sys/wait.h>#define ERR_EXIT(m) \ do { \ perror(m); \ exit(EXIT_FAILURE); \ } while(0)union semun { int val; /* Value for SETVAL */ struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */ unsigned short *array; /* Array for GETALL, SETALL */ struct seminfo *__buf; /* Buffer for IPC_INFO (Linux-specific) */ };int semid;#define DELAY (rand() % 5 + 1)void wait_for_2fork(int no) { int left = no; int right = (no + 1) % 5; struct sembuf buf[2] = { {left, -1, 0}, {right, -1, 0} }; semop(semid, buf, 2); }void free_2fork(int no) { int left = no; int right = (no + 1) % 5; struct sembuf buf[2] = { {left, 1, 0}, {right, 1, 0} }; semop(semid, buf, 2); }void philosopere(int no) { srand(getpid()); for (; ;) { printf("%d is thinking\n", no); sleep(DELAY); printf("%d is hungry\n", no); wait_for_2fork(no); printf("%d is eating\n", no); sleep(DELAY); free_2fork(no); } }int main(void) { semid = semget(IPC_PRIVATE, 5, IPC_CREAT | 0666); if (semid == -1) ERR_EXIT("semget"); union semun su; su.val = 1; int i; for (i = 0; i < 5; i++) { semctl(semid, i, SETVAL, su); } int no = 0; pid_t pid; for (i = 1; i < 5; i++) { pid = fork(); if (pid == -1) ERR_EXIT("fork"); if (pid == 0) { no = i; break; } } philosopere(no); return 0; } |
我们在说过,当需要对一个信号量集中的多个信号量操作时,要么全部执行,要么全部不执行,即是一个原子操作,某个进程需要等待两根筷子,即对两个信号量同时P成功才可以用餐,信号量的序号是0~4,可看作筷子的编号,此时semop 函数操作的是2个信号量,即需定义2个struct sembuf 结构体成员的数组 struct sembuf buf[2];
simba@ubuntu:~/Documents/code/linux_programming/UNP/system_v$ ./dinning 0 is thinking 3 is thinking 2 is thinking 4 is thinking 1 is thinking 4 is hungry 4 is eating 0 is hungry 3 is hungry 1 is hungry 1 is eating 2 is hungry 3 is eating 4 is thinking 1 is thinking 0 is eating 4 is hungry 0 is thinking 1 is hungry 1 is eating 3 is thinking 4 is eating 0 is hungry 1 is thinking 2 is eating 0 is eating 4 is thinking 2 is thinking 1 is hungry 3 is hungry 3 is eating
0 is thinking 2 is hungry 1 is eating 4 is hungry
................
如果发现程序没有运行卡着,即没有发生死锁现象,从中也可以发现同时最多只能有两个哲学家一起用餐,也不会出现相邻哲学家一起用餐的情况。
参考:
《UNP》